Freshness and Reactivity Analysis in Globally Asynchronous Locally Time-Triggered Systems

Frédéric Boniol¹, Michaël Lauer², Claire Pagetti¹, Jérôme Ermont³ (kindly presented by Pierre-Loïc Garoche)

¹ONERA - Toulouse, France

²Ecole Polytechnique de Montréal, Canada

³IRIT - Toulouse, France

2013, May 13th-16th

Brief introduction and main contributions

Context: real-time embedded systems (e.g. avionic systems)

- built as functional chains from sensors to actuators through real-time tasks
- critical
- ⇒ need of formal verification methods

⇒ Main contributions:

- a verification method for end-to-end freshness and reactivity properties along functional chains
- via a Mixed Integer Linear Programming formalization
- scalable approach

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- 3 The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- 4 Extension to reactivity requirements
- Conclusion and next work

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

A Flight Control Chain (extract)

- computes the aileron angle w.r.t the current total pressure
- composed of 1 sensor, 1 actuator and 5 tasks mapped onto 5 processing modules
- tasks communicate through the avionics network

A Flight Control Chain (extract)

- computes the aileron angle w.r.t the current total pressure
- composed of 1 sensor, 1 actuator and 5 tasks mapped onto 5 processing modules
- tasks communicate through the avionics network

End-to-end freshness requirement

Requirement:

- for any date t, let θ_m the current aileron angle (at t),
- let TP_n the sample on which θ_m depends
- then freshness requirement: $t date(TP_n) < 200ms$

Freshness

 $F(t) = t - date(TP_n)$ is the freshness of the θ_m at date t: the age of the output with respect to its related input

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- 3 The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

Model and hypotheses

System model:

- a set of periodic tasks $\Gamma = \{\tau_1, \dots, \tau_N\}$
- statically mapped onto a set of modules $\mathcal{M} = \{M_1, \dots, M_m\}$
- H_i is the hyper-period of the tasks mapped onto M_i .

Task model:

- each task τ_j on each module is characterized by a set of jobs $\{\tau_j(k)\}_{k=0...n_j}$ in the hyper-period of the module
- each job $\tau_j(k)$ is characterized by a timed interval $[b_j(k), e_j(k)]$ (static scheduling)

Model and hypotheses

Communication model: tasks are assumed to communicate in an asynchronous way

- inputs are read at the beginning of the task
- outputs are produced at any time before the end of the task

Communication means:

- tasks running on the same module communicate through memory without delay
- tasks running on different modules communicate through a global network with bounded traversal times

Model and hypotheses

Global asynchronism: processing modules are globally asynchronous

they can be shifted by an arbitrary amount of time.

⇒ Question: how to calculate the Worst Case Freshness (WCF) along a functional chain?

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- 4 Extension to reactivity requirements
- Conclusion and next work

Previous work

Local approaches

- The holistic approach (Tindell et al. (1994), Spuri (1996), ...)
- Real-Time Calculus (Thiele et al. (2000))
- → Can be pessimistic since they consider worst case scenario locally on every component along the functional chain
- ⇒ Lead to impossible scenarios

Network analysis methods

- Network Calculus (Le Boudec et al. (2001))
- Trajectory Approach (Martin et al. (2006))
- ⇒ Only for network traversal time

Previous work

Global approaches

- Global modeling by timed automata and model checking (Carcenac et al. (2006), Ning Ge et al. (2012))
- ⇒ higher expressive power (more general temporal properties)
- ⇒ however, suffer from the combinatorial explosion
- ⇒ then, not efficient enough for realistic systems.

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- Related approaches
 - Previous work
 - Contribution v.s. previous work
- 3 The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

The contribution v.s. the similar approaches

- to focus on end-to-end freshness / reactivity properties
- to propose a global encoding as an Mixed Integer Linear Program
- ⇒ less pessimistic than local approaches
- ⇒ more scalable than model checking

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- 4 Extension to reactivity requirements
- Conclusion and next work

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

General idea

Principle

- to characterize all the possible behaviors of the functional chain with a set of constraints,
- to determine the worst case scenario among all these possible behaviors maximizing the freshness criteria
- can be done automatically by a solver.

⇒ Challenge:

- to identify the variables of the modeling, and then the constraints defining accurately the behavior of the system
- in a scalable way

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

Case study recall

The modeling begins at the end (freshness characterizes the output of the chain w.r.t. to the input)

⇒ Focus on the end of the chain

Case study recall

- t_0 = (arbitrary) date at which the output is observed
- n =occurrence of task "*Aileron*" which produces the output at t_0
- t_1 = date at which "Aileron[n]" begins and reads its input
- $t_1 t'_1$ = communication time from "RDC_fc" to "Aileron"
- \Rightarrow t'_1 = date at which the output of " RDC_-fc " is observed
 - and so on...

Case study recall

 \Rightarrow Question: which constraints to characterize n, t_1 , t'_1 , t_2 ... from t_0 ?

Module (including sensors and actuators) modeling

- A module M_i is only characterized by an offset O_i
- Modules, sensors and actuators are asynchronous
- \bullet \Rightarrow each O_i can be arbitrarily chosen

⇒ Constraints (case-study):

$$O_{Aileron}, O_{RDC1}, O_{M1} \dots \in \mathbb{R}$$
 $0 \le O_{Aileron} \le H$
 $0 \le O_{RDC1} \le H$
 $0 \le O_{M1} \le H$

where H is the highest hyper-period of the system (H = 40 in the case-study)

 a task is characterized by a set of jobs in the hyper-period of its module

Example: ADR (2 jobs in 40ms): [0, 10], [25, 35]

Problem:

- t_0 the date at which the output is observed
- what constraints to determine which job produces the output and the date t_1 from t_0 ?

 a task is characterized by a set of jobs in the hyper-period of its module

Example: ADR (2 jobs in 40ms): [0, 10], [25, 35]

Problem:

- \bullet t_0 the date at which the output is observed
- what constraints to determine which job produces the output and the date t_1 from t_0 ?

Let:

- $p \in \mathbb{N}$ (index of the current hyper-period at t_0)
- ullet $B_{ADR[0]}, B_{ADR[1]} \in \{0, 1\}, B_{ADR[0]} + B_{ADR[1]} = 1$

$$t_0 \ge O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

 $t_0 < O_{M3} + 40p + 35B_{ADR[0]} + (40 + 10)B_{ADR[1]}$
(recall: a job can produce its output at anytime in its time interval)

$$t_1 = O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

Let:

- $p \in \mathbb{N}$ (index of the current hyper-period at t_0)
- \bullet $B_{ADR[0]}, B_{ADR[1]} \in \{0, 1\}, B_{ADR[0]} + B_{ADR[1]} = 1$

$$t_0 \ge O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

 $t_0 < O_{M3} + 40p + 35B_{ADR[0]} + (40 + 10)B_{ADR[1]}$
(recall: a job can produce its output at anytime in its time interval)

$$t_1 = O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

Let:

- $p \in \mathbb{N}$ (index of the current hyper-period at t_0)
- $B_{ADR[0]}, B_{ADR[1]} \in \{0, 1\}, B_{ADR[0]} + B_{ADR[1]} = 1$

$$t_0 \ge O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

 $t_0 < O_{M3} + 40p + 35B_{ADR[0]} + (40 + 10)B_{ADR[1]}$
(recall: a job can produce its output at anytime in its time interval)

$$t_1 = O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

Let:

- $p \in \mathbb{N}$ (index of the current hyper-period at t_0)
- $B_{ADR[0]}, B_{ADR[1]} \in \{0, 1\}, B_{ADR[0]} + B_{ADR[1]} = 1$

$$t_0 \ge O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

 $t_0 < O_{M3} + 40p + 35B_{ADR[0]} + (40 + 10)B_{ADR[1]}$
(recall: a job can produce its output at anytime in its time interval)

$$t_1 = O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

Let:

- $p \in \mathbb{N}$ (index of the current hyper-period at t_0)
- $B_{ADR[0]}, B_{ADR[1]} \in \{0, 1\}, B_{ADR[0]} + B_{ADR[1]} = 1$

$$t_0 \ge O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

 $t_0 < O_{M3} + 40p + 35B_{ADR[0]} + (40 + 10)B_{ADR[1]}$
(recall: a job can produce its output at anytime in its time interval)

$$t_1 = O_{M3} + 40p + 0B_{ADR[0]} + 25B_{ADR[1]}$$

All solutions

$$(p, B_{ADR[0]}, B_{ADR[1]}, t_1) \in \mathbb{N} \times \{0, 1\} \times \{0, 1\} \times \mathbb{R}$$

satisfying the previous constraints characterize possible scenarios leading to the observation of the output at t_0 .

Back to the case-study:

$$t_0 \ge O_{Aileron} + 5p + 0B_{Aileron[0]}$$
 (recall: *Aileron* has only one job in its hyper-period (5ms))

$$t_0 < O_{Aileron} + 5p + 6B_{Aileron[0]}$$
 (recall: the length of *Aileron* is 6ms)

$$t_1 = O_{Aileron} + 5p + 0 B_{Aileron[0]}$$

Communication modeling

Let

- δ_{min} = the minimum communication time
- δ_{max} = the maximum communication time

⇒ Constraints:

$$t_1' + \delta_{min} \leq t_1 \leq t_1' + \delta_{max}$$

Communication modeling

Let

- δ_{min} = the minimum communication time
- δ_{max} = the maximum communication time

⇒ Constraints:

$$t_1' + \delta_{min} \le t_1 \le t_1' + \delta_{max}$$

Latency requirement modeling

And so on ... up to

$$t_8 = O_{Air_sensor} + 5p_8 + 0B_{Air_sensor}$$

(t_8 is the date at which the total pressure corresponding to the Aileron position at t_0 is read; p_8 is the number of the corresponding hyper-period of the Air sensor)

⇒ The freshness expression:

$$F = t_0 - t_8$$

- \Rightarrow The worst case freshness is obtained on a particular behavior maximizing F.
- ⇒ Opimization problem:

maximize: F

Latency requirement modeling

And so on ... up to

$$t_8 = O_{Air_sensor} + 5p_8 + 0B_{Air_sensor}$$

(t_8 is the date at which the total pressure corresponding to the Aileron position at t_0 is read; p_8 is the number of the corresponding hyper-period of the Air sensor)

⇒ The freshness expression:

$$F=t_0-t_8$$

- \Rightarrow The worst case freshness is obtained on a particular behavior maximizing F.
- ⇒ Opimization problem:

maximize: F

The tool chain

System model + WCF requirement

MILP model

LP-solve

Worst-case latency + a worst-case scenario

Outline

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

Results on the case study: global v.s. local approach

- global approach against the local one (i.e. sum of the local worst case)
- by varying the upper bound of the communication delays through the network

End-to-end freshness of aileron angle

- red line = global approach
- dashed line = local approach

Outline

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- 3 The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

End-to-end reactivity requirement

End-to-end reactivity =

the minimal duration of an input signal, in order to be taken into account at the output of the chain

- i_m impacts o_k , $i_{m'}$ impacts o_{k+1}
- i_{m+1} to $i_{m'-1}$ do not impact the ouput (overwritten in the chain)
- \Rightarrow Worst Case Reactivity $\geq date(i_{m'}) date(i_m)$

End-to-end reactivity requirement

Approach:

- backtrack dependencies of two successive outputs
 - \bullet $\theta_m \rightsquigarrow TP_n$
 - $\theta_{m-1} \rightsquigarrow TP_{n'}$ (in the figure n' = n 5)
- use the same contraints / variables as for freshness analysis
- maximize: $date(TP_n) date(TP_{n'})$

Results on the case study: global v.s. local approach

- global approach against the local one (i.e. sum of the local worst case)
- by varying the upper bound of the communication delays through the network

- red line = global approach
- dashed line = local approach

End-to-end reactivity of total pressure

Outline

- Context: real-time embedded systems
 - An avionic case-study
 - Generalization: models and hypotheses
- 2 Related approaches
 - Previous work
 - Contribution v.s. previous work
- 3 The freshness analysis method
 - General idea
 - Modeling
 - Results on the case study
- Extension to reactivity requirements
- Conclusion and next work

Conclusion and next work

Conclusion

- An efficient method for worst-case end-to-end freshness and reactivity analysis
- Extendable for best-case analysis
- Scalability:
 - takes less then 1 minute on the case-study
 - functional chain in realistic avionic systems contains at most 10 jumps from a task to another one (similar to the case-study)
 - ⇒ seems to be scalable

Next work

 Take into account the internal behavior of the tasks (i.e. latencies induced by the functional behavior of a task) Thank you for your attention (and many thanks to Pierre-Loïc Garoche)